905 research outputs found

    Census of the Local Universe (CLU) Narrow-Band Survey I: Galaxy Catalogs from Preliminary Fields

    Get PDF
    We present the Census of the Local Universe (CLU) narrow-band survey to search for emission-line (\ha) galaxies. CLU-\ha~has imaged ≈\approx3π\pi of the sky (26,470~deg2^2) with 4 narrow-band filters that probe a distance out to 200~Mpc. We have obtained spectroscopic follow-up for galaxy candidates in 14 preliminary fields (101.6~deg2^2) to characterize the limits and completeness of the survey. In these preliminary fields, CLU can identify emission lines down to an \ha~flux limit of 10−1410^{-14}~erg s−1 cm−2\rm{erg~s^{-1}~cm^{-2}} at 90\% completeness, and recovers 83\% (67\%) of the \ha~flux from catalogued galaxies in our search volume at the Σ\Sigma=2.5 (Σ\Sigma=5) color excess levels. The contamination from galaxies with no emission lines is 61\% (12\%) for Σ\Sigma=2.5 (Σ\Sigma=5). Also, in the regions of overlap between our preliminary fields and previous emission-line surveys, we recover the majority of the galaxies found in previous surveys and identify an additional ≈\approx300 galaxies. In total, we find 90 galaxies with no previous distance information, several of which are interesting objects: 7 blue compact dwarfs, 1 green pea, and a Seyfert galaxy; we also identified a known planetary nebula. These objects show that the CLU-\ha~survey can be a discovery machine for objects in our own Galaxy and extreme galaxies out to intermediate redshifts. However, the majority of the CLU-\ha~galaxies identified in this work show properties consistent with normal star-forming galaxies. CLU-\ha~galaxies with new redshifts will be added to existing galaxy catalogs to focus the search for the electromagnetic counterpart to gravitational wave events.Comment: 28 pages, 22 figures, 4 tables (Accepted to ApJ

    More Flexibility in Representing Geometric Distortion in Astronomical Images

    Get PDF
    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention

    Identification of Stellar Flares Using Differential Evolution Template Optimization

    Get PDF
    We explore methods for the identification of stellar flare events in irregularly sampled data of ground-based time domain surveys. In particular, we describe a new technique for identifying flaring stars, which we have implemented in a publicly available Python module called "PyVAN". The approach uses the Differential Evolution algorithm to optimize parameters of empirically derived light-curve templates for different types of stars to fit a candidate light-curve. The difference of the likelihoods that these best-fit templates produced the observed data is then used to delineate targets that are well explained by a flare template but simultaneously poorly explained by templates of common contaminants. By testing on light-curves of known identity and morphology, we show that our technique is capable of recovering flaring status in 69%69\% of all light-curves containing a flare event above thresholds drawn to include <1%\lt1\% of any contaminant population. By applying to Palomar Transient Factory data, we show consistency with prior samples of flaring stars, and identify a small selection of candidate flaring G-type stars for possible follow-up.Comment: 15 figures, 24 page

    A Flaring AGN in a ULIRG Candidate in Stripe 82

    Get PDF
    We report the discovery of a mid-infrared variable AGN that is hosted by an ultraluminous infrared galaxy (ULIRG) in the Sloan Stripe 82 field. WISE J030654.88+010833.6 is a red, extended galaxy, which we estimate to be at a photometric redshift of 0.28 ≤ z ≤ 0.31, based on its optical and near-infrared spectral energy distribution (SED). The factor of two variability over 8 yr seen in the Wide-field Infrared Survey Explorer (WISE) 3.4 and 4.6 μm wavelength channels is not clearly correlated with optical variability in archival data. Based on our estimation of the physical parameters of the host galaxy, J030654.88+010833.6 is possibly a composite AGN/starburst ULIRG in a phase where high star formation ~70 M_⊙ yr^(−1) is occurring. Our estimate of the black hole mass to stellar mass ratio also appears to be consistent with that of broad line AGN in the local universe. The long-term variability of J030654.88+010833.6 as seen in the WISE W1 and W2 light curves is likely due to variations in the accretion rate, with the energy being reprocessed by dust in the vicinity of the AGN

    Tracer Spectroscopy Diagnostics Of Doped Ablators In Inertial Confinement Fusion Experiments On Omega

    Get PDF
    A technique has been developed for studying the time-dependent, local physical conditions in ablator samples in an inertial confinement fusion(ICF)hohlraum environment. This technique involves backlit point-projection absorption spectroscopy of thin tracer layers buried in the interior of solid samples mounted on laser-driven hohlraums. It is shown how detailed view-factor, atomic, hydrodynamics, and radiation-transport modeling can be used to infer time-dependent physical conditions in the interiors of these samples from the observed absorption spectra. This modeling is applied to the results of an experimental campaign on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] designed to compare radiation-wave velocities in doped and undoped ICF ablator materials

    SPIRE Point Source Catalog Explanatory Supplement

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) was launched as one of the scientific instruments on board of the space observatory Herschel. The SPIRE photometer opened up an entirely new window in the Submillimeter domain for large scale mapping, that up to then was very difficult to observe. There are already several catalogs that were produced by individual Herschel science projects. Yet, we estimate that the objects of only a fraction of these maps will ever be systematically extracted and published by the science teams that originally proposed the observations. The SPIRE instrument performed its standard photometric observations in an optically very stable configuration, only moving the telescope across the sky, with variations in its configuration parameters limited to scan speed and sampling rate. This and the scarcity of features in the data that require special processing steps made this dataset very attractive for producing an expert reduced catalog of point sources that is being described in this document. The Catalog was extracted from a total of 6878 unmodified SPIRE scan map observations. The photometry was obtained by a systematic and homogeneous source extraction procedure, followed by a rigorous quality check that emphasized reliability over completeness. Having to exclude regions affected by strong Galactic emission, that pushed the limits of the four source extraction methods that were used, this catalog is aimed primarily at the extragalactic community. The result can serve as a pathfinder for ALMA and other Submillimeter and Far-Infrared facilities. 1,693,718 sources are included in the final catalog, splitting into 950688, 524734, 218296 objects for the 250\mu m, 350\mu m, and 500\mu m bands, respectively. The catalog comes with well characterized environments, reliability, completeness, and accuracies, that single programs typically cannot provide
    • …
    corecore